Brahmagupta theorem

Brahmagupta Theorem

Brahmagupta theorem

to get instant updates about 'Brahmagupta Theorem' on your MyPage. Meet other similar minded people. Its Free!

X 

All Updates


Description:
Brahmagupta's theorem is a result in geometry. It states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. It is named after the Indian mathematician Brahmagupta.

More specifically, let A, B, C and D be four points on a circle such that the lines AC and BD are perpendicular. Denote the intersection of AC and BD by M. Drop the perpendicular from M to the line BC, calling the intersection E. Let F be the intersection of the line EM and the edge AD. Then, the theorem states that F is the midpoint AD.

Proof

We need to prove that AF = FD. We will prove that both AF and FD are in fact equal to FM.

To prove that AF = FM, first note that the angles FAM and CBM are equal, because they are inscribed angles that intercept the same arc of the circle. Furthermore, the angles CBM and CME are both complementary to angle BCM (i.e., they add up to 90°), and are therefore equal. Finally, the angles CME and FMA are the same. Hence, AFM is an isosceles triangle, and thus the sides AF and FM are equal.

The proof that FD = FM goes similarly: the angles FDM, BCM, BME and DMF are all equal, so DFM is an isosceles triangle, so FD = FM. It follows that AF = FD, as the theorem claims.

See also



External links





婆羅摩笈多定理
Read More

No feeds found

All
wait Posting your question. Please wait!...


No updates available.
No messages found
Suggested Pages
RRR
RRR
Tell your friends >
about this page
 Create a new Page
for companies, colleges, celebrities or anything you like.Get updates on MyPage.
Create a new Page
 Find your friends
  Find friends on MyPage from