Camber (aerodynamics)

Camber (Aerodynamics)

Camber (aerodynamics)

to get instant updates about 'Camber (Aerodynamics)' on your MyPage. Meet other similar minded people. Its Free!


All Updates

Camber, in aeronautics and aeronautical engineering, is the asymmetry between the top and the bottom surfaces of an aerofoil. An aerofoil that is not cambered is called a symmetric aerofoil. The benefits of camber, in contrast to symmetric aerofoils, were discovered and first utilized by Sir George Cayley in the early 19th century in Great Britain.


Camber is usually designed into an aerofoil to increase the maximum lift coefficient. This minimises the stalling speed of aircraft using the aerofoil. Aircraft with wings based on cambered aerofoils usually have lower stalling speeds than similar aircraft with wings based on symmetric aerofoils.

An aircraft designer may also reduce the camber of the outboard section of the wings to increase the critical angle of attack (stall angle) at the wing tips. When the wing approaches the stall angle this will ensure that the wing root stalls before the tip, giving the aircraft resistance to spinning and maintaining aileron effectiveness close to the stall.

Some recent designs use negative camber. One such design is called the supercritical aerofoil. It is used for near-supersonic flight, and produces a higher lift to drag ratio at near supersonic flight than traditional aerofoils. Supercritical aerofoils employ a flattened upper surface, highly cambered (curved) aft section, and greater leading edge radius as compared to traditional aerofoil shapes. These changes delay the onset of wave...
Read More

No feeds found

wait Posting your question. Please wait!...

No updates available.
No messages found
Tell your friends >
about this page
 Create a new Page
for companies, colleges, celebrities or anything you like.Get updates on MyPage.
Create a new Page
 Find your friends
  Find friends on MyPage from