Near-field scanning optical microscope

Near-Field Scanning Optical Microscope

Near-field scanning optical microscope

to get instant updates about 'Near-Field Scanning Optical Microscope' on your MyPage. Meet other similar minded people. Its Free!


All Updates

Near-field scanning optical microscopy (NSOM/SNOM) is a microscopic technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. This is done by placing the detector very close (distance much smaller than wavelength λ) to the specimen surface. This allows for the surface inspection with high spatial, spectral and temporal resolving power. With this technique, the resolution of the image is limited by the size of the detector aperture and not by the wavelength of the illuminating light. In particular, lateral resolution of 20 nm and vertical resolution of 2–5 nm have been demonstrated. As in optical microscopy, the contrast mechanism can be easily adapted to study different properties, such as refractive index, chemical structure and local stress. Dynamic properties can also be studied at a sub-wavelength scale using this technique.

NSOM/SNOM is a form of scanning probe microscopy.


Edward Hutchinson Synge, a scientist, is given credit for conceiving and developing the idea for an imaging instrument that would image by exciting and collecting diffraction in the near field. His original idea, proposed in 1928, was based upon the usage of intense nearly planar light from an arc under pressure behind a thin, opaque metal film with a small orifice of about 100 nm. The orifice was to remain within 100 nm of the surface, and information was...
Read More

No feeds found

Posting your question. Please wait!...

No updates available.
No messages found
Suggested Pages
Tell your friends >
about this page
 Create a new Page
for companies, colleges, celebrities or anything you like.Get updates on MyPage.
Create a new Page
 Find your friends
  Find friends on MyPage from