Quantum Monte Carlo

Quantum Monte Carlo

Quantum Monte Carlo

to get instant updates about 'Quantum Monte Carlo' on your MyPage. Meet other similar minded people. Its Free!


All Updates

Quantum Monte Carlo is a large class of computer algorithms that simulate quantum systems with the idea of solving the quantum many-body problem. They use, in one way or another, the Monte Carlo method to handle the many-dimensional integrals that arise. Quantum Monte Carlo allows a direct representation of many-body effects in the wave function, at the cost of statistical uncertainty that can be reduced with more simulation time. For bosons, there exist numerically exact and polynomial-scaling algorithms. For fermions, there exist very good approximations and numerically exact exponentially scaling quantum Monte Carlo algorithms, but none that are both.


In principle, any physical system can be described by the many-body Schrödinger equation as long as the constituent particles are not moving "too" fast; that is, they are not moving near the speed of light. This includes the electrons in almost every material in the world, so if we could solve the Schrödinger equation, we could predict the behavior of any electronic system, which has important applications in fields from computers to biology. This also includes the nuclei in Bose–Einstein condensate and superfluids such as liquid helium. The difficulty is that the Schrödinger equation involves a function of three times the number of particles and is difficult to solve even using parallel computing technology in a reasonable amount of time. Traditionally, theorists have approximated the...
Read More

No feeds found

Posting your question. Please wait!...

No updates available.
No messages found
Suggested Pages
Tell your friends >
about this page
 Create a new Page
for companies, colleges, celebrities or anything you like.Get updates on MyPage.
Create a new Page
 Find your friends
  Find friends on MyPage from