Rotating wave approximation

Rotating Wave Approximation

Rotating wave approximation

to get instant updates about 'Rotating Wave Approximation' on your MyPage. Meet other similar minded people. Its Free!


All Updates

The rotating wave approximation is an approximation used in atom optics and magnetic resonance. In this approximation, terms in a Hamiltonian which oscillate rapidly are neglected. This is a valid approximation when the applied electromagnetic radiation is near resonance with an atomic resonance, and the intensity is low. Explicitly, terms in the Hamiltonians which oscillate with frequencies <math>omega_L+omega_0 </math> are neglected, while terms which oscillate with frequencies <math>omega_L-omega_0 </math> are kept, where <math> omega_L </math> is the light frequency and <math> omega_0</math> is a transition frequency.

The name of the approximation stems from the form of the Hamiltonian in the interaction picture, as shown below. By switching to this picture the evolution of an atom due to the corresponding atomic Hamiltonian is absorbed into the system ket, leaving only the evolution due to the interaction of the atom with the light field to consider. It is in this picture that the rapidly-oscillating terms mentioned previously can be neglected. Since in some sense the interaction picture can be thought of as rotating with the system ket only that part of the electromagnetic wave that approximately co-rotates is kept; the counter-rotating component is discarded.

Mathematical formulation

For simplicity consider a two-level atomic system with excited and ground states <math>|textrangle</math> and...
Read More

No feeds found

Posting your question. Please wait!...

No updates available.
No messages found
Suggested Pages
Tell your friends >
about this page
 Create a new Page
for companies, colleges, celebrities or anything you like.Get updates on MyPage.
Create a new Page
 Find your friends
  Find friends on MyPage from